Game Theoretic Approach for Resource Allocation in Small Cell Networks

Publication Type:

Thesis

Source:

CentraleSupélec, Université Paris-Saclay, Volume PhD, Gif-sur-Yvette, p.164 (2016)

Keywords:

distributed caching, game theory, spectrum sharing

Abstract:

This thesis consists in developing distributed mechanisms for resource allocation in next-generation cellular networks. In the first part of this thesis, the technical and economic challenges for the implementation of distributed storage policies in small cell networks are addressed. In particular, a proactive storage approach is proposed enabling the small base stations to exploit the information extracted from online social networks to estimate the local popularity of the files. Another optimized storage approach is proposed for ultra-dense cellular networks while accounting for the instantaneous variations of the state of the storage units. To facilitate the deployment of these storage solutions, new economic mechanisms are developed to motivate content providers to cooperate with network operators and store their files within the operators’ small base stations. In the second part of this thesis, the problem of spectrum management is studied in cache-enabled small cell networks as well as LTE-U systems. In particular, a distributed backhaul management approach is proposed for cellular networks with heterogeneous backhaul links. On the other hand, a multi-game frame work is proposed as a new game theoretic tool to cope with the new resource allocation problems that emerge with the introduction of LTE-U technology in wireless networks. In this regard, a multi-game composed of two subgames of different types is formulated to optimize the coexistence of LTE-U base stations and WiFi users over unlicensed bands, while preventing LTE-U base stations from jeopardizing the WiFi users.