Optimal Design of Wireless Networks for Broadband Access with Minimum Power Consumption

Publication Type:

Conference Paper


IEEE International Conference on Communications, Kuala Lumpur, Malaysia (2016)


The continuous rise in wireless data traffic brings forth an increase in power consumption and static users constitute a large fraction of these traffic demands. This work focuses on designing cellular networks to deliver a given data rate per area and user, while minimizing the power consumption. In particular we are interested in optimizing the transmission power, density of access points (APs), number of AP antennas and number of users served in each cell. To this end, we consider a network model based on stochastic geometry and a detailed power consumption model to derive closed form expressions and obtain insights on the interplay of the aforementioned design parameters. The results show that, in contrast with previous works on optimal network design for energy efficiency, having exceedingly high AP density does not bring the most benefits in terms of power savings. Instead the AP density should be chosen according to the area data rate that we want to deliver. In addition numerical results show that the minimum power consumption is obtained in the Massive MIMO regime with many antennas and users per AP.

Full Text: