Joint Precoding and Load Balancing Optimization for Energy-Efficient Heterogeneous Networks

Publication Type:

Journal Article


IEEE Transactions on Wireless Communications, Volume 14, Number 10, p.5810-5822 (2015)


This paper considers a downlink heterogeneous network, where different types of multiantenna base stations (BSs) communicate with a number of single-antenna users. Multiple BSs can serve the users by spatial multiflow transmission techniques. Assuming imperfect channel state information at both BSs and users, the precoding, load balancing, and BS operation mode are jointly optimized for improving the network energy efficiency. We minimize the weighted total power consumption while satisfying quality-of-service constraints at the users. This problem is non-convex, but we prove that for each BS mode combination, the considered problem has a hidden convexity structure. Thus, the optimal solution is obtained by an exhaustive search over all possible BS mode combinations. Furthermore, by iterative convex approximations of the nonconvex objective function, a heuristic algorithm is proposed to obtain a suboptimal solution of low complexity. We show that although multicell joint transmission is allowed, in most cases, it is optimal for each user to be served by a single BS. The optimal BS association condition is parameterized, which reveals how it is impacted by different system parameters. Simulation results indicate that putting a BS into sleep mode by proper load balancing is an important solution for energy savings.

Full Text: