Optimal Multiuser Transmit Beamforming: A Difficult Problem with a Simple Solution Structure

Publication Type:

Journal Article


IEEE Signal Processing Magazine, Volume 31, Number 4, p.142-148 (2014)


Transmit beamforming is a versatile technique for signal transmission from an array of N antennas to one or multiple users [1]. In wireless communications, the goal is to increase the signal power at the intended user and reduce interference to non-intended users. A high signal power is achieved by transmitting the same data signal from all antennas, but with different amplitudes and phases, such that the signal components add coherently at the user. Low interference is accomplished by making the signal components add destructively at non-intended users. This corresponds mathematically to designing beamforming vectors (that describe the amplitudes and phases) to have large inner products with the vectors describing the intended channels and small inner products with non-intended user channels.

If there is line-of-sight (LoS) between the transmitter and receiver, beamforming can be seen as forming a signal beam toward the receiver; see Figure 1. Beamforming can also be applied in non-LoS scenarios, if the multipath channel is known, by making the multipath components add coherently or destructively.

Since transmit beamforming focuses the signal energy at certain places, less energy arrives to other places. This allows for so-called space-division multiple access (SDMA), where K spatially separated users are served simultaneously. One beamforming vector is assigned to each user and can be matched to its channel. Unfortunately, the finite number of transmit antennas only provides a limited amount of spatial directivity, which means that there are energy leakages between the users which act as interference.

While it is fairly easy to design a beamforming vector that maximizes the signal power at the intended user, it is difficult to strike a perfect balance between maximizing the signal power and minimizing the interference leakage. In fact, the optimization of multiuser transmit beamforming is generally a nondeterministic polynomial-time (NP) hard problem [2]. Nevertheless, this lecture shows that the optimal transmit beamforming has a simple structure with very intuitive properties and interpretations. This structure provides a theoretical foundation for practical low-complexity beamforming schemes.

Full Text: