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Abstract—Deep learning based on artificial neural networks is
a powerful machine learning method that, in the last few years,
has been successfully used to realize tasks, e.g., image classifica-
tion, speech recognition, translation of languages, etc., that are
usually simple to execute by human beings but extremely difficult
to perform by machines. This is one of the reasons why deep
learning is considered to be one of the main enablers to realize the
notion of artificial intelligence. The current methodology in deep
learning methods consists of employing a data-driven approach
in order to identify the best architecture of an artificial neural
network that allows one to fit input-output data pairs. Once the
artificial neural network is trained, it is capable of responding to
never-observed inputs by providing the optimum output based
on past acquired knowledge. In this context, a recent trend in
the deep learning community is to complement pure data-driven
approaches with prior information based on expert knowledge.
This work describes two methods that implement this strategy
in the context of wireless communications, also providing specific
case-studies to assess the performance compared to pure data-
driven approaches.

I. INTRODUCTION AND MOTIVATION

Recently, deep learning has received attention as a technique
to design and optimize wireless communication systems and
networks, by employing fully data-driven approaches. We
believe, however, that the application of deep learning to
communication networks design and optimization offers more
possibilities. As opposed to other fields of science, such
as image classification and speech recognition, mathematical
models for communication networks optimization are very
often available, even though possibly simplified. We believe
that this a priori expert knowledge, which has been acquired
over decades of intense research, cannot be dismissed and
ignored. In the present work, in particular, we put forth a
new approach that capitalizes on the availability of (possibly
simplified) theoretical models, in order to reduce the amount
of empirical data to use and the complexity of training artificial
neural networks (ANNs). Unlike other application fields, we
concretely show, with the aid of some examples, that synergis-
tically combining prior expert knowledge based on analytical
models and data-driven methods is a suitable approach towards
the design and optimization of communication systems and
networks with the aid of deep learning based on ANNs.
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II. ARTIFICIAL INTELLIGENCE BY DEEP LEARNING

Artificial intelligence (AI) broadly refers to the ability of
machines to mimic the process of human intelligence. This is
typically achieved through machine learning techniques, which
enable machines to perform tasks by processing and learning
from available data, instead of running a fixed computer
program explicitly written for the problem at hand.

In the context of AI, deep learning is a specific machine
learning method that implements the learning process by
employing ANNs [1]. In principle, ANNs are able to op-
erate in a fully data-driven fashion, thus dispensing system
designers with the need of mathematical modeling and expert
supervision of knowledge. When large datasets are available,
moreover, deep learning is known to outperform other ma-
chine learning techniques. These features have made deep
learning the most widely used machine learning technique
in fields such as image classification, speech recognition,
translation between languages, autonomous driving, etc., for
which a mathematical description of the task to be executed
is particularly challenging to be obtained. In these areas of
research, however, an emerging opinion is that pure data-
driven approaches may become unfeasible in the context of
large-scale applications, due to the huge amount of required
data, and to the related processing complexity. In [2], for
example, image processing for object position detection in
robotic applications is considered, and it is observed that
augmenting a small training dataset of real images with a
large dataset of synthetic images significantly improves the
estimation accuracy with respect to processing only the small
dataset of real images. Similar results have been obtained in
[3] for application to speech recognition.

III. DEEP LEARNING IN COMMUNICATIONS: WHY NOW?

Before discussing potential techniques to merge expert
knowledge and deep learning, we discuss why deep learning is
emerging now as a valuable tool for wireless networks design.

General machine learning techniques are not new to wireless
communications [4], [5], even though the use of deep learn-
ing has never been considered in the past. In our opinion,
this is mainly due to the fact that, unlike other fields of
science where theoretical modeling is particularly difficult to
be performed and a data-driven approach is often the only
solution available, wireless communications have always relied
on strong theoretical models for their system design and
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optimization. This status quo, however, is rapidly changing,
and very recently the use of deep learning has started being
envisioned for wireless communication applications. Indeed,
the increasing complexity of wireless networks makes it harder
and harder to come up with theoretical models that are at
the same time accurate and tractable. The rising complexity
of 5G and beyond 5G networks is exceeding the modeling
and optimization possibilities of standard mathematical tools.
In addition, the use of deep learning for communications is
further facilitated by:

• The recent exponential growth of connected devices,
which provide communication network designers with an
increasing amount of data to process.

• The recent technological improvements and enriched
capabilities of specialized hardware for data processing
(e.g., GPUs), which make deep learning algorithms ap-
plicable in practice in the context of wireless network
optimization.

• The recent development of technologies (e.g., the
Blockchain) that facilitate the secure and accurate pro-
cessing of large databases that are distributed over mul-
tiple network nodes.

In addition to the above-mentioned enabling factors, it is our
personal opinion that the use of deep learning for application to
wireless communications provides communications theorists
and engineers with another major opportunity. As discussed
in Section II, an emerging research trend in the deep learning
community is the development of techniques that exploit prior
information that is available about the problem to solve. In the
context of wireless communications, this represents a great
opportunity, because theoretical models, despite their possible
inaccuracy or cumbersomeness, are often available and provide
much deeper prior information compared to other fields of
science. This clear advantage of wireless communications
should not be wasted. Accordingly, the aim of this work is
to corroborate the intuition that available theoretical models
and frameworks can indeed provide enough expert knowledge
to facilitate the use of deep learning for application to wireless
networks design. To this end, two main methods of embedding
expert knowledge into deep learning techniques are discussed,
and three specific case studies are analyzed.

IV. LEARNING TO OPTIMIZE BY DEEP NEURAL
NETWORKS

A fundamental component of wireless networks manage-
ment and operation is the allocation of the available resources
to optimize desired performance functions, ensuring guaran-
teed performance to each user. Depending on the complexity
of the system, the four scenarios in Table I can be identified.

As far as this work is concerned, the most interesting
scenarios are represented by Cases C.2 and C.3. Cases C.1 and
C.4, in fact, can be handled by traditional system design ap-
proaches and pure data-driven techniques, respectively. Cases
C.2 and C.3, on the other hand, offer the opportunity of cross-
fertilization between model-aided and data-driven approaches,
as discussed in the next two sections. Moreover, the avail-
ability of theoretical models, although possibly inaccurate or

Table I
SCENARIOS FOR RESOURCE MANAGEMENT IN WIRELESS NETWORKS.

C.1: An accurate and tractable theoretical model is available
(e.g., point-to-point channel capacity, point-to-points bit error
rates).
C.2: An accurate but intractable theoretical model is available
(e.g., achievable sum-rate in interference-limited systems).
C.3: A tractable but inaccurate theoretical model is available
(e.g., spectral / energy efficiency of ultra-dense networks,
energy consumption models, hardware impairments).
C.4: Only inaccurate and intractable theoretical models are
available (e.g., molecular communication networks, optical
systems, end-to-end networks optimization).

intractable, represents the most common scenario in wireless
communications.

A. Learning to Optimize a Model

Let us assume to be in Case C.2. Then, a mathematical
formula for the performance metric to optimize is available,
but it is too complex to be maximized by using traditional
optimization theory methods, e.g., by directly tackling the
optimization problem requires an exponential complexity in
the number of variables to optimize. It is important to stress
that in this case the issue is not solving the optimization
problem, but rather the complexity and the time required to
do so. This is a critical problem, for example, in mobile
scenarios, wherein the network status changes rapidly (e.g., a
user joins/leaves the network, the channel realizations/statistics
change, new traffic requests occur, etc.) and thus the optimal
resource allocation needs to be updated each time the network
scenario changes (so, very often), thus making real-time im-
plementation unfeasible.

In this context, the joint use of deep learning and traditional
optimization theory can significantly speed up the computation
of the optimal resources. The key idea is based on two
observations:

• Resource allocation can be regarded as the problem of
determining the map between the system parameters (e.g.,
the propagation channels, the number of active nodes,
the users’ positions, etc.) and the corresponding optimal
resource allocation to use.

• ANNs are known to be universal function approximators,
i.e., they can be trained to learn, virtually, any input-
output map [6].

As a result, our proposed idea is to configure an ANN,
whose inputs are the system parameters and whose outputs are
the resources to allocate, so that its input-output relationship
approximates the map between the system parameters and the
optimal resource allocation. Once the ANN has been config-
ured, it is possible to update the resource allocation without
having to solve any optimization problems in real-time, i.e.,
every time that the system configuration changes. Indeed, the
new system configuration needs only to be fed as the input of
the already configured ANN, and the corresponding optimal
resource allocation is obtained as the output of the ANN.
This entails a negligible computational complexity, since an
ANN performs only a composition of affine combinations and
elementary function evaluations to compute its output.
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Figure 1. A training set is built from a mathematical model and used to train
an ANN to perform resource allocation.

Based on these considerations, the main issue to be dis-
cussed is the complexity required to configure the ANN.
Unfortunately, the result from [6] is not constructive, since
it only establishes that a suitable configuration exists. For this
reason, the ANN needs to be trained in a supervised fashion to
learn the desired map, which requires to process a training set,
i.e., a dataset containing examples of system configurations
with the corresponding optimal resource allocation. Thus, the
complexity of the training process is due to the processing
of the training set and to its generation. The former is
accomplished by efficient, off-the-shelf, stochastic gradient
descent algorithms that adjust the ANN parameters in order
to reduce the error between the actual output and the desired
training output. The latter, instead, is more computationally
intensive, because it requires to solve the resource optimization
problem by (traditional) optimization techniques. At a first
sight, it might be argued that this defeats the complexity gain
granted by the trained ANN. However, we stress that this is
not the case for two main reasons:

• The training set can be generated off-line and then used
to train the ANN. Thus, a much higher complexity can
be afforded and real-time constraints does not constitute
an issue for this phase.

• The training set can be updated at a much longer time-
scale as opposed to the rate change of the network
parameters.

Thus, the training process does not need to be executed each
time a system parameter changes, and the solution does not
need to be obtained before another system parameter changes.
The use of traditional optimization theory to generate the
training set together with the use of an available theoretical
system model, on the other hand, constitute exactly the expert
knowledge that is exploited to facilitate the use of deep
learning techniques to perform real-time resource allocation
strategies in wireless communication networks.

The approach described in this section is schematically
depicted in Fig. 1. In a nutshell, the available accurate model
is used to efficiently training the ANN, which can then be
used for the efficient implementation of real-time resource
allocation strategies.

B. Learning to Refine a Model

Let us assume to be in Case C.3. A tractable model is then
available, but it is not sufficiently accurate. Nevertheless, even
inaccurate models can provide useful information that should
not be dismissed. In general, employing a fully data-driven
approach to train an ANN requires the need of acquiring a
huge amount of live data, which might not be practical due
to the time, the complexity, or the economical reasons that
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Figure 2. An approximate model is used to perform an initial training phase,
which is later refined through a second training phase performed by employing
a training set built from measured data.

this process entails. Instead, the availability of an approximate
model can be exploited to perform a first rough training of the
ANN, which can be subsequently refined only through a small
set of real data.

More precisely, we propose the following approach:

• First, a training set based on a (possibly approximate)
model is obtained, by using conventional optimization
theory, as described in Section IV-A.

• Then, an ANN is trained by processing the generated
training set, as discussed in Section IV-A. This provides
an initial configuration for the ANN.

• Finally, the pre-trained ANN architecture is refined
through a new training phase based on real/measured
data (i.e., input-output pairs corresponding to the optimal
network configuration).

Intuitively, the first training phase provides one with an
estimate of the desired ANN configuration. This initialization
may reduce the amount of measured data that is required
in the second phase, when compared with the conventional
approach of training an ANN by relying solely on measured
data, without any initial guess of the ANN parameters. The
method is schematically depicted in Fig. 2.

The attractive feature of the proposed method lies in ex-
ploiting the available expert knowledge to select an efficient
starting point for the second training phase. Selecting an effi-
cient initialization point when training an ANN is recognized
to be a relevant issue that significantly affects the performance
of ANNs. To date, however, only heuristic methods or ran-
dom initializations have been proposed in the deep learning
literature [7], [8]. Instead, the initialization method that we
propose provides one with a stronger theoretical justification,
since it approximates the desired ANN configuration based on
the expert knowledge at our disposal. Clearly, the performance
of the proposed approach strongly depends on the accuracy of
the model that is used. If the difference between the model and
the real system is not too large, and the initial training phase is
performed on enough data, then the second training phase will
start from an ANN configuration that is already close to the
desired configuration, and thus only a small dataset and a few
gradient iterations might suffice to refine the ANN setup. On
the other hand, if the model is a bad approximation of the true
system, or a small training set is used, then the initial training
might yield a misleading ANN configuration, thus requiring
even more data in the second phase to obtain a good solution.
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V. APPLICATIONS

In this section, we consider three case-studies in order
to substantiate the discussed model-aided ANN approaches.
Our objective is two-fold. First, we show that, by using the
approach introduced in Section IV-A, an ANN can be used
to implement real-time resource allocation schemes that are
too complex to be handled by available optimization-theoretic
approaches. Then, based on the methodology introduced in
Section IV-B, we show that an ANN can be first roughly
trained by using (large) datasets based on analytical, but
inaccurate, models, and subsequently fine-tuned by datasets
of live data with limited size compared with what would be
required if the initial training based on analytical models is
not performed.

A. Real-Time Energy Efficiency Maximization in Multi-user
Networks

Consider the uplink of a multi-user network with interfering
mobile terminals. The objective is to allocate the transmit
powers of the users in order to maximize the network bit-
per-Joule energy efficiency, defined as the ratio between the
system sum achievable rate over the total network power
consumption. In this scenario, a model to formulate the energy
efficiency optimization problem is available, but the presence
of multi-user interference makes the problem too complex to
be globally solved at an affordable computational complexity
[9]. This is especially problematic when the optimization is
performed based on instantaneous channel realizations, and
thus needs to be performed anew every time the channel
coefficients change. This causes a considerable complexity
overhead preventing real-time implementations. The problem
can be overcome by the approach from Section IV-A. We
illustrate it by using a simple example.

A circular area with radius 500m and 10 mutually interfer-
ing mobile users is considered. In order to build a training set,
10,000 independent scenarios are generated by randomly drop-
ping the users in the service area, modeling the propagation
losses according to [10] and the fading channels as standard
complex Gaussian random variables. For each scenario, the
optimal energy-efficient power allocation strategy is computed
off-line by fractional programming [11]. Accordingly, 10,000
training samples are obtained.

A feedforward ANN with rectified linear unit activation
functions and 10 layers is considered. Layers 1 and 2 have
18 neurons, and the number of neurons of the other layers
decreases by 2 every two layers. Thus, the output layer has
10 neurons, providing the users’ transmit powers.

The performance of the trained ANN is evaluated over a test
set of 10,000 new channel scenarios, generated following the
same procedure used for the training set, but with independent
users’ drops and channel realizations. Fig. 3 compares the
average (over the test set) energy efficiency obtained using the
trained ANN, and the global optimum obtained by fractional
programming, versus the maximum feasible transmit power
Pmax. The energy efficiency obtained when all users transmit
with power Pmax is reported as well. It is observed that,
despite the much lower complexity, the ANN-based scheme
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Figure 3. Energy efficiency versus Pmax by: (Black line) Method from [11];
(Blue line) Deep learning by using ANN; (Red line) Full power allocation.

is optimal for low Pmax, and near-optimal for larger Pmax,
where it achieves around 95% of the optimal value.

B. Energy Efficiency Maximization in non-Poisson Cellular
Networks

Consider the problem of optimizing the deployment density
of a cellular network, given the transmit power of the base sta-
tions, and aiming at energy efficiency optimization. By assum-
ing that the base stations are distributed according to a Poisson
point process, an accurate and realistic analytical model energy
efficiency optimization has been recently proposed in [12], and
the optimal deployment density of the cellular base stations
has been formulated in a tractable analytical form. Leveraging
[12], large datasets can be generated with low computational
effort, which provides system designers with the optimal base
station density as a function of the base stations transmit
power. It is known, on the other hand, that similar tractable
analytical frameworks cannot be easily obtained if the cellular
base stations are distributed according to non-Poisson spatial
models, which makes the energy efficiency optimization of
such network cellular deployments very difficult [13]. In
addition, the generation of large datasets based on non-Poisson
point processes is a time and memory consuming task, which
makes it difficult to obtain large datasets containing the opti-
mal data pairs (optimal deployment density, transmit power)
for training purposes.

The two-step approach introduced and described in Section
IV-B is thus motivated. We consider an ANN whose objective
is to provide the system designer with the optimal deployment
density of the base stations that optimizes the energy efficiency
for a given transmit power of the base stations. Thus, the
transmit power of the base stations is the input of the ANN
and the optimal deployment density of the base stations is
the output of the ANN. It is assumed, in particular, that the
base stations are distributed according to a non-Poisson point
process, whose exact distribution is not known, and that just



5

(some) empirical datasets are available about the locations of
the base stations.

We aim at understanding whether by performing an initial
training of the ANN based on a large, Poisson-based dataset,
followed by a second training based on a smaller dataset of
empirical (or synthetic from simulations) data, we can obtain
similar performance as using only a large training set of real
data. To answer this question, the following approach is used:

1) A large dataset is generated, by assuming that the base
stations are distributed according to a Poisson point pro-
cess, and by computing the optimal base station density
by using the analytical framework recently proposed in
[12]. The ANN is first trained by using the obtained
dataset.

2) A smaller dataset is generated, by assuming the actual
(non-Poisson) spatial distribution for the locations of the
base stations and by computing the optimal transmit
power through an exhaustive search. The pre-trained
ANN is refined by employing this second training set.

The results are illustrated in Fig. 4, where the horizontal
axis reports the amount of non-Poisson empirical data used to
train the ANN and the vertical axis shows the mean relative
square error. Both the training error and the validation errors
are reported. It is assumed that the total amount of data used
for training the ANN is 10,000 samples. In the horizontal axis,
x% (of 10,000 samples) denotes the amount of non-Poisson
data used during the refinement phase. This implies that (100-
x)% (of 10,000 samples) is the amount of data used for the
initial training of the ANN based on the Poisson data obtained
from the analytical framework in [12]. A square grid model
is considered, as far as the non-Poisson model is concerned
[13]. For the ANN network architecture summarized in the
caption of the figure, we observe that there exist a few values
of x% for which the mean relative square error of training and
validation phases are smaller than the corresponding values
obtained by training the ANN by using only non-Poisson
datasets. This is because the gradient search used for training
is better initialized and the refinement phase can converge to
a better solution. On the other hand, if the amount of Poisson
data used for the first training phase is too small, the first
phase may not converge appropriately, which may result in
a bigger relative mean square error. This result highlights the
potential of using (even inaccurate) analytical models to better
train ANNs, but, at the same time, the need of judiciously
choosing the amount of data to use from the assumed model
and from the actual empirical data.

C. Energy Efficiency Maximization with Unknown Power Con-
sumption Models

In this case study, we consider again the problem of
optimizing the deployment density of a cellular network, given
the transmit power of the base stations and by considering
the energy efficiency as the key performance indicator of
interest. As opposed to the first case study, we assume that the
cellular base stations are distributed according to a Poisson
point process, which is considered to be accurate for the
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Figure 4. Feedforward ANN with 5 layers, 4 neurons in each hidden layer,
and sigmoidal activation functions. The ANN is trained by using the Bayesian
regularization back propagation algorithm that uses, at most, 100 iterations for
each training phase. The bars corresponding to 0% and 100% empirical data
are obtained by training the ANN with only Poisson and non-Poisson data,
respectively. Training and validation errors are computed from 1,000 samples
of non-Poisson data.

application of interest. We assume, however, that only a sim-
plified statistical model for the static and idle hardware power
consumptions of the cellular base stations is available. Details
about the definitions of static and idle power consumptions can
be found in [12]. Specifically, we consider that the static and
idle hardware power consumptions are distributed according
to two uniform random variables with some given mean and
variance. Although tractable, this model is clearly a rough
approximation of the actual hardware power consumption,
which will in practice deviate from the considered model.
Nevertheless, the numerical results that are shown in this
section confirm that even such a simple model can provide
us with enough prior information.

Based on the adopted uniform model, the optimal deploy-
ment density of the cellular base stations is computed, as
a function of the transmit power and of the static and idle
power consumptions, by employing the optimization frame-
work proposed in [12], which allows us to easily produce
large datasets for training ANNs. Subsequently, we generate
a smaller dataset based on the actual realizations of the static
and idle hardware power consumptions, which, for ease of
reproducibility, are assume to follow a Gaussian model with
fixed mean and variance. We note that, as opposed to the case
study in the previous section, the considered ANN has three
inputs (the transmit power of the base stations, the static power
consumption, the idle power consumption) and one output (the
optimal deployment density of the base stations), and so it is
more difficult to train as opposed to the one-input and one-
output ANN considered in the previous case study.

With these two datasets available, we use a similar pro-
cedure as the one discussed in Section V-B to train the
considered ANN:
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Figure 5. Feedforward ANN with 6 layers, 4 neurons in each hidden layer,
and sigmoidal activation functions. The ANN is trained by using the Bayesian
regularization back propagation algorithm that uses, at most, 250 iterations for
each training phase. The bars corresponding to 0% and 100% empirical data
are obtained by training the ANN with only Poisson and non-Poisson data,
respectively. Training and validation errors are computed from 1,000 samples
of non-Poisson data.

1) First, the initial training of the ANN is performed based
on the training set obtained from the approximate power
consumption model (uniform distribution).

2) Then, the dataset obtained from the true values of the
static and idle hardware power consumptions are used to
refine the initial training.

The results are illustrated in Fig. 5. The figure shows similar
trends as those reported in Fig. 4. This clearly highlights that
using data from (possibly inaccurate) models may be beneficial
to reduce the amount of required empirical data. It is apparent,
in addition, that the amount of data to be used for the two
phases is a critical hyper-parameter to be optimized, which
highly depends on the ANN architecture being used.

VI. CONCLUSION AND OPEN RESEARCH ISSUES

Based on theoretical arguments and numerical evidence
illustrated in the present work, it is possible to conclude
that mathematical models and optimization techniques provide
unique insights to complement and improve ANN data-driven
approaches. Unlike other application fields where deep learn-
ing may be employed, the solid theoretical understanding of
wireless communication systems and networks that communi-
cation theorists have developed during the last decades provide
us with unique opportunities to be exploited.

It is our hope that the present article will spur the interest
of our research community, towards developing efficient ways
of combining emerging deep learning wireless applications
with theoretical prior knowledge originating from traditional
modeling and optimization theory. The present work has in-
troduced and substantiated an approach towards this direction,
which, however, represents only the tip of the iceberg. Many
important questions and research issues need to be addressed

to synergistically combine conventional model-based and inno-
vative data-driven approaches. Some of them as listed below:

• How does the dimension of the training set scale with the
number of parameters to learn? It is anticipated that larger
problems will require more training data, but different
scaling laws might be observed for different classes of
optimization problems.

• Is it possible to infer the resource allocation for a large
system from the resource allocation of a smaller system?
This would enable to scale up known ANN configurations
to higher dimensions without explicitly performing a new
training process.

• When using a simplified model for pre-training, how is
the accuracy of the simplified model related to the amount
of training data to use in both phases? The presented
simulation have shed some light in this direction, but
more investigation is needed for a solid understanding
of this issue.

Finally, while the proposed approach represents a possible
method to combine deep learning with mathematical modeling,
it is to be mentioned that other approaches exist. In particular,
we mention the framework of deep reinforcement learning
[14], [15], which merges deep learning and reinforcement
learning. In principle, deep reinforcement learning is able to
learn optimal action policies in a fully data-driven fashion, by
simply learning from direct interaction with the environment.
Also in this case, however, the availability of prior information
can significantly speed up the convergence of the algorithm
and reduce the amount of required data. A dedicated compar-
ison between the approach discussed in the present work and
the use of model-aided deep reinforcement learning represents
an interesting future research direction.
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