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ABSTRACT
In this paper, we investigate the limitations of capacity-based
random code constructions for the wiretap channel, i.e., con-
structions that associate to each confidential message a sub-
code whose rate approaches the capacity of the eavesdrop-
per’s channel.
Generalizing a previous result for binary symmetric chan-
nels, we show that random capacity-based codes do not
achieve the strong secrecy capacity over the symmetric dis-
crete memoryless channels they were designed for. However,
we also show that these codes can achieve strong secrecy
rates provided they are used over degraded wiretap chan-
nels.

1. INTRODUCTION
In most communication schemes, coding at the physical layer
is merely performed to ensure reliability; however, seminal
results obtained by Wyner and Csiszár & Körner for the
wiretap channel [1, 2] have shown the existence of coding
schemes that can simultaneously guarantee reliability and
secrecy against passive eavesdroppers. In addition, the se-
crecy of such schemes is measured quantitatively in terms
of statistical independence. Specifically, if the random vari-
able M represents the transmitted message, Xn represents
the encoded message and Zn represents the observation of
an eavesdropper, perfect secrecy is achieved if M and Zn

are independent or, equivalently, I(M;Zn) = 0. Exact sta-
tistical independence is unfortunately too stringent to be
amenable to further analysis; therefore, as originally sug-
gested by Wyner, it is convenient to relax the constraint
and to require asymptotic statistical independence in the
limit of large encoding length n. Two measures of asymp-
totic statistical independence have been commonly used:

- weak secrecy, which requires limn→∞
1
n
I(M;Zn) = 0;

- strong secrecy, which requires limn→∞ I(M;Zn) = 0;

It has been shown that the maximum rate of secure and reli-
able communication over a wiretap channel is the same irre-
spective of the metric used [3]; however, this does not imply
that a specific code achieving weak secrecy achieves strong
secrecy. With the exception of [4, 5], most code construc-
tions based on polar codes [6, 7, 8, 9] or LDPC codes [10]
proposed thus far have been proved to achieve weak secrecy
only and whether they achieve strong secrecy remains an
open question. A closer look at the latter constructions re-
veals that secrecy is obtained by associating to each confi-
dential message a subcode whose rate approaches the capac-
ity of the eavesdropper’s channel; hence we call such codes
capacity-based wiretap codes.

In this paper, we highlight the potential limitations of capa-
city-based wiretap codes by showing that random capacity-
based wiretap codes that achieve the weak secrecy capacity
for symmetric discrete memoryless channels (DMCs) can-
not achieve the strong secrecy capacity. This result is a
generalization of that obtained in [11] for binary symmetric
channels. The proof follows the same reasoning as [11], but
we reproduce it here in full for the sake of completeness.

The rest of the paper is organized as follows. Section 2 in-
troduces the notation and channel model considered in the
paper. Section 3 summarizes known techniques to show the
achievability of secure rates and highlights how capacity-
based codes guarantee secrecy. Section 4 forms the core of
the paper and proves that random capacity-based wiretap
codes cannot achieve the strong secrecy capacity of symmet-
ric DMCs. The special case where the channel of the legiti-
mate receiver is error-free is also examined. Moreover, it is
shown that capacity-based codes can achieve strong secrecy
rates provided they are used over degraded wiretap channels.
Section 5 offers some concluding remarks and perspectives.

2. PRELIMINARIES

2.1 Notation
We briefly detail the notation used in the paper. The no-
tation log always stands for the logarithm in base 2. For
random variables X, Y, H(X) denotes the entropy of X, and
I(X;Y) the mutual information between X and Y. For prob-
ability distributions p, q, D(p‖q) and V(p, q) denote respec-
tively the Kullback-Leibler divergence and L1 variational
distance of p and q.



Given a proposition P, we define

1{P} =

{
1 if P is true,

0 if P is false.

2.2 Wiretap channel
We consider the wiretap channel WT(Wb,We) illustrated in
Figure 1, which consists of two symmetric DMCs: the chan-
nel from X to Y of the legitimate receiver with transition
probabilities Wb = pY|X and capacity Cb, and the channel
from X to Z of the eavesdropper, with transition probabili-
ties We = pZ|X and capacity Ce. The alphabets X ,Y,Z are
assumed to be finite. The notion of symmetric channel used
in the paper and its properties are detailed in Section 2.3.

Definition (Wiretap code). A (2nR, 2nR
′
, n) wiretap code

Cn consists of a message set Mn = J1, 2nRK, an auxiliary

message set M′n = J1, 2nR
′
K, an encoding function fn :

Mn×M′n → Xn, and a decoding function (for the legitimate
receiver) gn : Yn →Mn ×M′n. M denotes the confidential
message, and M′ the auxiliary message, Xn is the transmit-
ted codeword and Yn, Zn are the corresponding outputs of
the channels Wb and We. (M̂, M̂′) = gn(Yn) is the estimate
of the legitimate receiver.

The messages M and M′ are assumed to be uniformly dis-
tributed in their respective sets. The reliability of a wiretap
code is measured in terms of the average probability of error

Pe(Cn) , P
{

(M,M′) 6= (M̂, M̂′)|Cn
}
.

while its secrecy is measured in terms of the information
leaked to the eavesdropper

L(Cn) , I(M;Zn|Cn).

Definition (Capacity-based and resolvability-based
codes). A sequence of wiretap codes {Cn}n≥1 is called ca-
pacity-based if

R′ = Ce − εn, lim
n→∞

εn = 0,

and if ∀n > 0 there exists a decoding function hn : Zn ×
Mn →M′n. We denote by M̃′ = hn(Zn,M) the correspond-
ing estimate.
If on the contrary R′ > Ce for large n, we say that the se-
quence of codes is resolvability-based.

The reliability of a capacity-based wiretap code is measured
with the modified average probability of error

P ∗e (Cn) = P
{

(M̂, M̂′) 6= (M,M′) or M̃′ 6= M′|Cn
}
.

WbENC

Zn

M̂, M̂′M,M′ YnXn

We

DEC

Figure 1: Wiretap channel model.

Definition (Achievable secrecy rates). A rate R is an
achievable weak secrecy rate if there exists a sequence of
wiretap codes {Cn}n≥1 of rate R such that

lim
n→∞

Pe(Cn) = 0 lim
n→∞

1

n
L(Cn) = 0.

Similarly, a rate R is an achievable strong secrecy rate if
there exists a sequence of wiretap codes {Cn}n≥1 of rate R
such that

lim
n→∞

Pe(Cn) = 0 lim
n→∞

L(Cn) = 0.

The rate R is an achievable (strong or weak) secrecy rate
with capacity-based wiretap codes if the same conditions hold
upon replacing Pe by P ∗e . The weak (resp. strong) secrecy ca-
pacity Cs is the supremum of achievable weak (resp. strong)
secrecy rates.

2.3 Properties of symmetric channels
In this paper we focus on the case where Wb and We are sym-
metric DMCs. Several notions of channel symmetry have
been proposed in the literature [12]. For instance, the fol-
lowing definition was given by Cover and Thomas [13].
Recall that the transition matrix of a channel W from X =
{x1, . . . , x|X|} to Z = {z1, . . . , z|Z|} is

M = (mij) = (W (zj |xi)).

Definition (CT-symmetric). A DMC W is CT-symmetric
if every row of the transition matrix M is a permutation of
every other row, and all the column sums are equal.

This condition is too restrictive for us, for it does not in-
clude the binary erasure channel, one of the few examples
of channels for which explicit wiretap codes achieving both
weak and strong secrecy have been constructed [4, 5, 6, 14].
We will thus adopt the following alternative condition pro-
posed by Gallager [15]:

Definition (G-symmetric). A DMC W with input X and
output Z is G-symmetric if Z can be partitioned into subsets
in such a way that, for every subset, the corresponding sub-
matrix of transition probabilities has the property that each
row is a permutation of each other row and each column is
a permutation of each other column. That is, there exists a
partition Z = Z1 ∪ · · · ∪ Zr into disjoint sets such that:

• ∀a, ā ∈ X , there exists a permutation πaā : Z → Z
such that ∀k ∈ J1, rK, πaā(Zk) = Zk, and

∀z ∈ Z, W (z|a) = W (πaā(z)|ā), (1)

• ∀k ∈ J1, rK, ∀b, b̄ ∈ Zk, there exists a permutation πbb̄ :
X → X such that

∀x ∈ X , W (b|x) = W (b̄|πbb̄(x)). (2)

Note that G-symmetry does not imply CT-symmetry, and
vice-versa [12].

Theorem (Gallager). For a G-symmetric DMC with input
X and output Y, the input distribution that achieves capacity
is the uniform distribution on X .



Remark 1. Even though the output distribution qZ corre-
sponding to the uniform input distribution qX is not neces-
sarily uniform for G-symmetric channels, it turns out that
it is locally uniform on each set Zk, k = 1, . . . , r of the par-
tition [15]:

∀z, z̄ ∈ Zk, qZ(z) = qZ(z̄).

This property follows easily from the fact that the columns
are permutations of each other:

qZ(z) =
∑
a∈X

qX(a)W (z|a) =
∑
a∈X

1

|X |W (z|a) =

=
∑
a∈X

1

|X |W (z̄|πzz̄(a)) =
∑
a′∈X

1

|X |W (z̄|a′) = qZ(z̄).

Remark 2. For a G-symmetric channel W from X to Z,
if the input X is uniformly distributed on X ,

∀x, x̄ ∈ X , D(pZ|X=x‖qZ) = D(pZ|X=x̄‖qZ).

Consequently, the capacity C = I(X;Z) = D(pZ|X=x‖qZ) ∀x ∈
X .

Proof. We have

D(pZ|X=x‖qZ) =
∑
z∈Z

W (πxx̄(z)|x̄) log
W (πxx̄(z)|x̄)

qZ(πxx̄(z))
=

=
∑
z′∈Z

W (z′|x̄) log
W (z′|x̄)

qZ(z′)
= D(pZ|X=x̄‖qZ).

We can write

I(X;Z) =
∑
x∈X

qX(x)
∑
z∈Z

W (z|x) log
W (z|x)

qZ(z)
=

=
∑
x∈X

1

|X |D(pZ|X=x‖qZ).

3. ACHIEVING SECRECY: CAPACITY VS.
RESOLVABILITY

In this section, we prove that random capacity-based wiretap
codes achieve weak secrecy capacity and show that random
resolvability-based wiretap codes achieve strong secrecy.
Strictly speaking, these proofs have already appeared in var-
ious forms [1, 16, 17, 18], and we reproduce them to highlight
the fundamental differences between the two constructions.

In both situations, we start with a random capacity-based

code Cn, whose 2n(R+R′) codeword symbols are generated
independently according to a distribution qX on X . The
codewords are labeled c(m,m′) with m ∈ J1, 2nRK and m′ ∈
J1, 2nR

′
K. Let qZ be the output distribution of the eaves-

dropper’s channel corresponding to the input qX, defined as

∀z ∈ Z, qZ(z) =
∑
x∈X

We(z|x)qX(x),

and qZn the product of n i.i.d. copies of this output distri-
bution:

qZn(zn) =

n∏
i=1

qZ(zi).

Lemma 1 (Secrecy from capacity). Let Cn denote the
random variable representing the randomly generated code.
Let εn > 0 be such that limn→∞ εn = 0 but limn→∞

√
nεn =

∞. Then, for n sufficiently large, there exists α > β > 0
such that{

R+R′ < I(X;Y)
R′ = I(X;Z)− εn ⇒

{
ECn{P ∗e (Cn)} ≤ 2−αn

ECn

{
1
n
L(Cn)

}
≤ εn + 1

n
2−βn.

Proof. The fact that the conditions R + R′ < I(X;Y) and
R′ < I(X;Z) imply ECn{P ∗e (Cn)} ≤ 2−αn for some α >
0 follows from standard large deviation techniques, see for
instance [19]. Next, notice that

ECn{L(Cn)} = ECn{I(M;Zn|Cn)}
= ECn{I(MXn;Zn|Cn)− I(Xn;Zn|M)}
= ECn {I(X

n;Zn|Cn) + I(M;Zn|XnCn)

−H(Xn|M) + H(Xn|MZn)}
(a)

≤ ECn{I(X
n;Zn)−H(Xn|M) + H(Xn|MZn)}

(b)

≤ ECn{nI(X;Z)− nR′ + P ∗e (Cn)nR}
≤ nεn + nRECn{P

∗
e (Cn)}

≤ nεn + nR2−αn

(c)

≤ nεn + 2−βn.

Here (a) follows from the fact that I(Xn;Zn|Cn) < I(Xn;Zn),
and that I(M;Zn|Xn,Cn) = 0 because M → Xn → Zn is a
Markov chain; (b) follows from Fano’s inequality and (c)
holds for some β ∈ (0, α) and n sufficiently large.

Note that the speed at which ECn{L(Cn)} decays is tightly
related to the speed at which one can approach the capac-
ity of the eavesdropper’s channel I(X;Z). Unfortunately,
large deviation techniques cannot circumvent the condition
limn→∞

√
nεn =∞.

Instead of using capacity-based wiretap codes, one may use
resolvability-based wiretap codes, in which case the analysis
of secrecy relies on the following lemma [20].

Lemma 2 (Cloud mixing). If the random codebook size

is 2nR̄ with R̄ > I(X;Z), then ∃β > 0 such that

∀n, ECn

[
V(pZn|Cn , qZn)

]
≤ e−βn,

where the expectation is computed over the random code en-
semble.

Lemma 3 (Secrecy from resolvability). Let Cn denote
the random variable representing the randomly generated code.
Then, for n sufficiently large, there exists α > γ > 0 such
that

R+R′ < I(X;Y)⇒ ECn{Pe(Cn)} ≤ 2−αn

R′ > I(X;Z)⇒ ECn{L(Cn)} ≤ 2−γn.

Proof. The first part follows from the same arguments as in
Lemma 1.



The second part follows by noting that

ECn{V(pMZn|Cn , pM × pZn|Cn)}
= ECnM{V(pZn|MCn , pZn|Cn)}
≤ ECnM{V(pZn|MCn , qZn) + V(qZn , pZn|Cn)}
≤ 2ECnM{V(pZn|MCn , qZn)}
(a)
= ECn{V(pZn|M=1Cn , qZn)}
(b)

≤ 2−βn

where (a) follows by symmetry of the random code construc-
tion and (b) follows from Lemma 2. Then, Lemma 1 in [21]
guarantees that there exists γ > 0 such that

ECn{L(Cn)} ≤ 2−γn.

Note that the condition R′ > I(X;Z) allows us to establish
strong secrecy directly. Naturally, one can wonder whether
our inability to prove strong secrecy in Lemma 1 is fun-
damentally linked to the use of capacity-based codes, or
whether this is simply a limitation of the proof. In the fol-
lowing section, we show that random capacity-based wire-
tap codes cannot achieve the strong secrecy capacity, which
suggests that such constructions are less powerful than re-
solvability-based ones.

4. CAPACITY-BASED RANDOM CODES DO
NOT ACHIEVE THE STRONG SECRECY
CAPACITY

We consider a random capacity-based code Cn whose code-
words are generated independently according to the uniform
distribution qX on X . To simplify notation, we denote by
pXn = pXn|Cn the uniform distribution on the codewords of
Cn, and pZn = pZn|Cn the corresponding output distribution
of the eavesdropper’s channel. Note that, in general, the
components of pZn are not i.i.d.
The following Proposition generalizes the result of Lemma 3
in [11] obtained for the case of binary symmetric channels:

Proposition 1. Let {Cn}≥1 be a sequence of (2nR, 2nR
′
, n)

capacity-based codes for the wiretap channel WT(Wb,We)
obtained by generating codeword symbols independently ac-
cording to the uniform distribution qX on X , and such that
R+R′ < Cb, the channel capacity of the legitimate receiver.
Then there exist α′ > 0, η > 0 such that ∀κ > 0,

PCn {L(Cn) ≥ η − κ− fκ(n)} ≥ 1− 2−α
′n.

for some function fκ : N→ R+ with limn→∞ fκ(n) = 0.

Proof. By definition, L(Cn) = I(M;Zn) = D(pMZn‖pM×pZn).
Watanabe et al. [22] (Theorem 6 and proof of Theorem 7)
showed that ∀b > 0,

E(Cn) + V(pMZn , pM × pZn) ≥ 1− (2−b
√
n+1 + P(An)),

where E(Cn) = P
{
M̃′ 6= M′

}
, and

An =

{
(xn, zn) :

2−b
√
n

|Mn|
< pXn|Zn(xn|zn) ≤ 2b

√
n

|Mn|

}
=

=

{
(xn, zn) :

2−b
√
n

|Mn|
<
pZn|Xn(zn|xn)pXn(xn)

pZn(zn)
≤ 2b

√
n

|Mn|

}
Clearly P ∗e (Cn) ≥ E(Cn). From Pinsker’s inequality, we get

V(pMZn , pM × pZn) ≤
√

2 ln 2 D(pMZn‖pM × pZn) =

=
√

2 ln 2 L(Cn),

therefore

P ∗e (Cn) +
√

2 ln 2 L(Cn) ≥ 1−
(

2−b
√
n+1 + P(An)

)
. (3)

Since Xn is uniform on the code, pXn(Xn) = 1
|Cn| = 1

2n(R+R′) =
1

|Mn|2n(Ce−εn) . Therefore we can write

P(An) = P(A+
n )− P(A−n ), where

A+
n =

{
log

pZn|Xn(Zn|Xn)

pZn(Zn)
≤ b
√
n+ n(Ce − εn)

}
,

A−n =

{
log

pZn|Xn(Zn|Xn)

pZn(Zn)
≤ −b

√
n+ n(Ce − εn)

}
. (4)

Estimate of P(A+
n ). The set A+

n can be rewritten as{
log

pZn|Xn(Zn|Xn)

qZn(Zn)
− log

pZn(Zn)

qZn(Zn)
≤ b
√
n+ n(Ce − εn)

}
Let

Bn =

{
log

pZn(Zn)

qZn(Zn)
< b
√
n

}
,

A′n =

{
log

pZn|Xn(Zn|Xn)

qZn(Zn)
≤ 2b
√
n+ n(Ce − εn)

}
.

By the law of total probability,

P(A+
n ) = P(A+

n |Bn)P(Bn) + P(A+
n |Bcn)P(Bcn) ≤

≤ P(A+
n ∩ Bn) + P(Bcn) ≤ P(A′n) + P(Bcn)

since A+
n ∩ Bn ⊂ A′n. We have

P(Bcn) = P
{

log
pZn(Zn)

qZn(Zn)
≥ b
√
n

}
=

=
1

b
√
n

∑
zn∈Zn

b
√
n pZn(zn)1{

log
pZn (zn)

qZn (zn)
≥b
√
n

} ≤

≤ 1

b
√
n

∑
zn∈Zn

pZn(zn) log
pZn(zn)

qZn(zn)
1{

log
pZn (zn)

qZn (zn)
≥b
√
n

} ≤
≤ 1

b
√
n
D(pZn‖qZn).

We can estimate the divergence as follows:

D(pZn‖qZn) =
∑

zn∈Zn
pZn(zn) log

pZn(zn)

qZn(zn)
=

= −H(pZn)−
∑

zn∈Zn
pZn(zn) log qZn(zn) =

= H(qZn)−H(pZn) +
∑

zn∈Zn
(qZn(zn)− pZn(zn)) log qZn(zn).

Recall that the entropy is continuous with respect to the
variational distance (Lemma 2.7 in [23]): if two probability
distributions p,q on X satisfy V(p, q) ≤ 1

2
, then

|H(p)−H(q)| ≤ V(p, q) log

(
|X |

V(p, q)

)
.



Therefore

|H(pZn)−H(qZn)| ≤ V(pZn , qZn) log

(
|Z|n

V(pZn , qZn)

)
.

Since the rate of the random code is R+R′ = R+Ce−εn >
Ce = I(X;Z) for n large enough, Lemma 2 holds. Markov’s
inequality implies that for β < α,

P
(
V(pZn , qZn) ≥ 2−βn

)
≤ 2−αn+βn ≤ 2−α

′n

for some α′ > 0, for n large enough. So with probability

greater than 1− 2−α
′n, the first term can be bounded by

|H(qZn)−H(pZn)| ≤ 2−βn(n log |Z|+ βn). (5)

The second term in the expression of the divergence is in
turn bounded by

−
∑

zn∈Zn
(pZn(zn)− qZn(zn)) log qZn(zn) ≤

≤ V(pZn , qZn) max
zn∈Zn

(− log qZn(zn)) = nV(pZn , qZn) log
1

µZ
≤

≤ log
1

µZ
n2−βn (6)

where µZ = minz∈Supp(qZ) qZ(z). Thus, from (5) and (6) we
conclude that

P(Bcn) ≤ 2−βn

b
√
n

(
n log |Z|+ βn+ n log

1

µZ

)
≤ Cn2−βn

for some C > 0. We still need to show that

P(A′n) = P

{
n∑
i=1

log
We(Zi|Xi)
qZ(Zi)

≤ ϕ(n)

}
=

=
∑

xn∈Xn
zn∈Zn

pXn(xn)pZn|Xn(zn|xn)1{∑n
i=1 log

We(zi|xi)
qZ(zi)

≤ϕ(n)
}

also vanishes, where ϕ(n) = 2b
√
n+n(Ce− εn). For a fixed

realization Cn = {c(1), . . . , c(|Cn|)} of the code, this can be
written as the weighted sum over the codewords:

|Cn|∑
j=1

1

|Cn|
∑

zn∈Zn

n∏
i=1

We(zi|c(j)i)1{∑n
i=1 log

We(zi|c(j)i)
qZ(zi)

≤ϕ(n)
}.

Let x, x̄ ∈ X : from the property (1) in the definition of
G-symmetric channel and from Remark 1, we have

We(z|x)

qZ(z)
=
We(πxx̄(z)|x̄)

qZ(z)
=
We(πxx̄(z)|x̄)

qZ(πxx̄(z))
.

Since the πxx̄ : Z → Z are permutations, all the terms in
the sum over the codewords coincide and are equal to

∑
zn∈Zn

(
n∏
i=1

We(zi|x̄)

)
1{∑n

i=1 log
We(zi|x̄)
qZ(zi)

≤ϕ(n)
} =

= P

{
n∑
i=1

log
We(Z̃i|x̄)

qZ(Z̃i)
≤ ϕ(n)

}
.

where Z̃i is the random variable corresponding to the out-
put of the eavesdropper’s channel for a fixed input equal

to x̄. Since the channel is memoryless, the Z̃i, i ∈ J1, nK,

are independent and identically distributed and the random
variables

Ei = f(Z̃i) = log
We(Z̃i|x̄)

qZ(Z̃i)

are also i.i.d. with common pdf pE. Moreover, Remark 2
implies that E {pE} = Ce, the capacity of the eavesdropper’s
channel.
Denote by σ2 the variance of E, and by ρ its third moment.
Observe that σ > 0 and ρ < ∞. Then the Berry-Esseen
theorem implies that ∃c > 0 such that ∀x,

P
{∑n

i=1 (Ei − Ce)
σ
√
n

≤ x
}
≤ 1√

2π

∫ x

−∞
e−

x2

2 dx+
cρ√
nσ3

.

If we choose x = 2b
σ
−
√
nεn
σ

, we get

P(A′n) = P

{
n∑
i=1

Ei ≤ 2b
√
n+ n(Ce − εn)

}
≤

≤ 1√
2π

∫ 2b
σ
−
√
nεn
σ

−∞
e−

x2

2 dx+
cρ√
nσ3

. (7)

and

P(A+) ≤ 1√
2π

∫ 2b
σ
−
√
nεn
σ

−∞
e−

x2

2 dx+
cρ√
nσ3

+ C
√
n2−βn.

Estimate of P(A−). We estimate the measure of A− in a
similar manner to A+. First we rewrite A− as{

log
pZn|Xn(Zn|Xn)

qZn(Zn)
− log

pZn(Zn)

qZn(Zn)
≤ −b

√
n+ n(Ce − εn)

}
Let

A′′n =

{
log

pZn|Xn(Zn|Xn)

qZn(Zn)
≤ −2b

√
n+ n(Ce − εn)

}
,

Dn =

{
log

pZn(Zn)

qZn(Zn)
≥ −b

√
n

}
By the law of total probability,

P(A−) = P(A+
n |Dn)P(Dn) + P(A+

n |Dcn)P(Dcn) ≥
≥ P(A+

n |Dn)P(Dn) ≥ P(A′′n|Dn)P(Dn)

since A′′n ∩ Dn ⊂ A+
n ∩ Dn.

We have P(Dn) ≥ 1− 2−b
√
n, since

P(Dcn) = P
{

log
pZn(Zn)

qZn(Zn)
< −b

√
n

}
=

=
∑

zn∈Zn
pZn(zn)1{

log
pZn(zn)
qZn (zn)

<−b
√
n

} <
≤

∑
zn∈Zn

qZn(zn)2−b
√
n1{

log
pZn(zn)
qZn (zn)

<−b
√
n

} ≤ 2−b
√
n.

By the Inclusion-Exclusion principle,

P(A′′n|Dn)P(Dn) = P(A′′n ∩ Dn) =

= P(A′′n) + P(Dn)− P(A′′n ∪ Dn) ≥ P(A′′n) + P(Dn)− 1 ≥

≥ P(A′′n)− 2−b
√
n.

Berry-Esseen’s theorem with x = − 2b
σ
−
√
nεn
σ

implies that

P(A′′n) = P
{

log
pZn|Xn(Zn|Xn)

qZn(Zn)
≤ −2b

√
n+ n(Ce − εn)

}
≥



≥ 1√
2π

∫ − 2b
σ
−
√
nεn
σ

−∞
e−

x2

2 dx− cρ√
nσ3

. (8)

Thus

P(A−) ≥ 1√
2π

∫ − 2b
σ
−
√
nεn
σ

−∞
e−

x2

2 dx− cρ√
nσ3

− 2−b
√
n.

Estimate of P(An). Putting together the estimates of P(A+)
and P(A−), we can conclude that ∀b > 0, with probability

greater than 1− 2−α
′n,

P(An) ≤ Cn2−βn + 2−b
√
n +

1√
2π

∫ 2b
σ
−
√
nεn
σ

− 2b
σ
−
√
nεn
σ

e−
x2

2 dx+

+
2cρ√
nσ3

≤ Cn2−βn + 2−b
√
n +

4b√
2πσ

+
2cρ√
nσ3

for some constant C > 0. Then from (3) we get

L(Cn) ≥ 1√
2 ln 2

(
1− f(b, n)− 4b√

2πσ
− P ∗e (Cn)

)
,

with limn→∞ f(b, n) = 0. Lemma 1 implies that with prob-
ability tending to 1 exponentially fast, P ∗e (Cn)→ 0. Since b
can be arbitrarily small, limn→∞ L(Cn) ≥ 1√

2 ln 2
.

4.1 Case of error-free legitimate channel
If the legitimate channel Wb is the identity channel I, the
code Un consisting of all the possible codewords of length n
taken with equal probability always guarantees reliable com-
munication for the legitimate receiver. If each confidential
message is associated to a subcode approaching the capacity
Ce of the eavesdropper’s channel, the sequence {Un}n≥1 is
a capacity-based code sequence that achieves the weak se-
crecy capacity. However, a similar result to Proposition 1
still holds in this case. This result has already been proved
in [6] with a slightly different approach.

Lemma 4. Suppose that the sequence of codes {Un}n≥1

achieves the weak secrecy capacity of the wiretap channel
WT(I,We). Then, ∃η > 0 such that

lim
n→∞

L(Un) ≥ η,

and so it cannot achieve the strong secrecy capacity.

Proof. The proof of this Lemma is a special case of the proof
of Proposition 1. In this case, pXn(Xn) = qXn(Xn) = 1

|X|n is

the uniform distribution. Similarly to equation (4), we can
write

P(An) = P(A+
n )− P(A−n ), where

A+
n =

{
log

pZn|Xn(Zn|Xn)

qZn(Zn)
≤ b
√
n+ n(Ce − εn)

}
,

A−n =

{
log

pZn|Xn(Zn|Xn)

qZn(Zn)
≤ −b

√
n+ n(Ce − εn)

}
.

Similarly to equations (7) and (8), after applying Berry-
Esseen’s theorem we find

P(A+
n ) ≤ 1√

2π

∫ b
σ
−
√
nεn
σ

−∞
e−

x2

2 dx+
cρ√
nσ3

,

P(A−n ) ≥ 1√
2π

∫ − b
σ
−
√
nεn
σ

−∞
e−

x2

2 dx− cρ√
nσ3

.

Therefore, ∀b > 0,

P(An) ≤ 1√
2π

∫ b
σ
−
√
nεn
σ

− b
σ
−
√
nεn
σ

e−
x2

2 dx+
2cρ√
nσ3

≤

≤ 2b√
2πσ

+
2cρ√
nσ3

.

The thesis then follows from (3) since P ∗e (Un) → 0 (by a
similar reasoning to Lemma 1).

4.2 Achieving strong secrecy by transmitting
beyond the eavesdropper’s channel capac-
ity

The result of Proposition 1 is rather disappointing, since it
shows that capacity-based random codes designed for a sym-
metric wiretap channel WT(Wb,We) fail to achieve strong
secrecy rates over this channel. The good news is that strong
secrecy is achievable on all symmetric channels WT(Wb,W

′
e)

such that the new eavesdropper’s channel W ′e has smaller ca-
pacity than We.

Lemma 5. Let {Cn}n≥1 be a sequence of random capacity-
based codes for the symmetric discrete memoryless wiretap
channel WT(Wb,We), and let W ′e be a symmetric DMC with
capacity C′e < Ce. Then there exists α > 0 such that with
probability greater than 1 − 2−αn, {Cn}n≥1 achieves strong
secrecy rates on WT(Wb,W

′
e).

The proof follows the same reasoning as Lemma 3.

5. CONCLUSION AND PERSPECTIVES
In this paper we have generalized a previous result by Bloch
[11] for the binary symmetric wiretap channel to all sym-
metric discrete memoryless wiretap channels, showing that
capacity-based code constructions that achieve weak secrecy
are suboptimal from the point of view of the strong secrecy
metric, and that in particular they cannot achieve the strong
secrecy capacity.
Up to now, we have focused on the limitations of capaci-
ty-based random codes. It is natural to wonder whether
structured capacity-based codes, such as polar codes for the
binary symmetric wiretap channel [6] or the capacity-based
LDPC codes for the binary erasure wiretap channel in [14],
share the same drawbacks or not. Indeed, in the case where
the channel of the legitimate receiver is noiseless, we can
already answer affirmatively to this question.
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